
Puppet for Developers
-

 “Intermediate” SOE

That other talk

• Setup an SOE based on:

• Repo Server with Kickstart; and

• Puppetmaster;

• Write some modules for every day things:

• files, users, some templates, etc;

• very simple fact;

• Discouragement of using define to create types.

This talk

• Leveraging existing SOE to help other teams;

• Puppet to assist in deployment and maintenance
of developing/evolving projects;

• Manage “complex” Puppet installations;

• Creating a real fact;

• Leverage Puppet’s programming features;

• Encouragement to use define for custom types.

Leveraging the existing SOE

• The SOE should allow quickly deployment of
alike systems that meet a set specification.

• Others in organisation can benefit from access.

• Best to offer before “others” re-invent wheel.

Reuse, replicate and expand

• Kickstart environment:

• build to closely matches yours;

• but not so close that it restricts.

• Puppetmaster:

• use environments; and

• be involved in the evolution to production

The “Others”

• Primary focus is working with “Developers”;

• Differ from most clients:

• more than a handful of scripts;

• not just a few service configuration;

• not just one canned application;

• bring own (custom) application(s) that need to
integrate with the OS.

Help them!
• Developers are not System Administrators:

• Trust system defaults:

• Consistent UID / GID; and

• Security (DAC) is optional or random;

• Anything more serious (e.g.: SELinux and
firewalls) are restrictive and thus disabled.

• SOE probably has preferences or policies.

• Changing their assumed settings late may break
their work.

Assisting developing projects
• “Standard” Puppet is geared to make System

Administrator work easier, right now;

• “Complex” Puppet is about making everyone’s
life a little harder (use puppet = change), with a
longterm payoff.

• It will pay off: this is standardising how to deploy
custom applications to SOE hosts;

• Results in “appliances”.

“Standard” Puppet

• Puppet can easily manage:

• servers that have a defined role;

• adjustments to that role.

• ... and just as easily many different roles.

• Puppet maintains; it does not automatically evolve
servers / projects.

“Complex” Puppet

• Supporting projects that are still evolving.

• Currently favours very dynamic practices.

• Virtual hosts can be rapidly:

• modified;

• multiplied;

• torn down and

• rebuilt.

Developers’ needs

• Multiple stages or classes of hosts;

• The ability to rapidly test new builds;

• Progress builds from test through to production;

• Make things work.

Sys Admins’ needs

• Hosts and services to keep running;

• Servers that can be maintained with confidence;

• Less people to have root access.

• Everything to keep running, no matter what.

These clearly conflict

• In short:

• Developers need hosts that are flexible;

• Sys Admins need hosts that are predictable.

Classes of hosts

• testing - anything goes, managed by “others”;

• development - “manything” goes, used for dev
work. Not mission critical...

• ... though sometimes part of the DR strategy.

• production - hands off.

define “testing”

• Desktop VMs;

• Proof of concept;

• very disposable;

• internal use only;

• “not your problem”;

simplified kickstart

• Using the production kickstart environment is
usually not simple:

• Restricted access;

• Limited customisation;

• Not something responsive to individual needs.

• Thus, build a cut down kickstart system.

SOE-like Desktop VMs
• Ideally uses the same:

• partitioning;

• base packages; and

• repositories;

• But might use:

• DHCP rather than fixed IP;

• (possibly) reduced security settings;

• (possibly) local users only;

These are for them

• Remember everyone’s expertise:

• Developers’ deliverables will need to work on
production hosts one day.

• Communicate and work together.

Our solution: differences

• kickstart via url (rather than ISO);

• mostly identical ks.cfg but uses php;

• relies on DHCP rather than fixed IP and
hostname.

Our SOE-like Desktop VMs
• same partitioning, base packages and repos;

• uses LDAP for authentication;

• service users are always local;

• optional iptables and SELinux (as in production);

• some disabled SOE Puppet modules;

• own Puppet modules sub-tree;

• on-host network with PFsense, DHCP and NAT.

KS via http

• Requires:

• PHP installed (on the repo server);

• CentOS 6.2 netinstall ISO (on target desktop);

• ks.cfg which is copied to somewhere httpd can
serve it and named index.php

• remember to restart httpd after installing php.

index.php ... part 1
<?php
$hostname = $_GET['hostname'];
?>
install
#url --url http://192.168.1.5/mrepo/rhel6-server-x86_64/
url --url http://192.168.1.5/mrepo/CentOS6-x86_64/disc1
key --skip
lang en_US.UTF-8
keyboard us

network --device eth0 --bootproto dhcp --hostname <?php echo $hostname .
PHP_EOL ?>

password is kickstart
rootpw --iscrypted $1$5YF630$HDlrn.VYFUvtPVwHDmdun0
firewall --enabled --port=22:tcp
authconfig --enableshadow --enablemd5
selinux --enforcing
timezone Australia/Brisbane

index.php ... part 2

bootloader --location=mbr --driveorder=sda --append=" rhgb crashkernel=auto
quiet"
clearpart --all --initlabel --drives=sda

part /boot --fstype ext4 --fsoptions "defaults,strictatime" --size=128 --
ondisk=sda
part pv.1 --size=100 --grow --ondisk=sda
volgroup VolGroup00 --pesize=32768 pv.1
logvol / --fstype ext4 --fsoptions "defaults,strictatime" --name=LogVol_root
--vgname=VolGroup00 --size=2048
logvol /usr --fstype ext4 --fsoptions "defaults,strictatime" --
name=LogVol_usr --vgname=VolGroup00 --size=3072
logvol /home --fstype ext4 --fsoptions "defaults,strictatime" --
name=LogVol_home --vgname=VolGroup00 --size=1024
logvol /var --fstype ext4 --fsoptions "defaults,strictatime" --
name=LogVol_var --vgname=VolGroup00 --size=100 --grow

index.php ... part 3
%packages
@Base
@Core
-NetworkManager
-NetworkManager-glib
-arts
%end

%post --nochroot
mkdir /mnt/sysimage/mnt/dvd
mkdir /mnt/sysimage/mnt/nfs
mkdir /mnt/sysimage/mnt/samba

%post
Setup /opt
mkdir /var/root-opt ; chmod 755 /var/root-opt
mkdir /opt ; chmod 755 /opt
echo "/var/root-opt /opt none bind" >> /etc/fstab
/bin/mount /opt

Setup /tmp
mkdir /var/root-tmp ; chmod 1777 /var/root-tmp
rm -fr /tmp ; mkdir /tmp ; chmod 1777 /tmp
echo "/var/root-tmp /tmp none bind" >> /etc/fstab
/bin/mount /tmp

index.php ... part 4
install repo releases (keys and repo files)
rpm -i http://192.168.1.5/mrepo/CentOS6-x86_64/RPMS.epel-x86_64/epel-
release-6-5.noarch.rpm
rpm -i http://192.168.1.5/mrepo/puppetlabs/puppetlabs-products/puppetlabs-
release-6-1.noarch.rpm

disable repofiles
for repos in `ls /etc/yum.repos.d/` ; do > /etc/yum.repos.d/$repos ; done
chattr +i /etc/yum.repos.d/*repo

get local configuration
wget http://192.168.1.5/local_repo/LocalMirror.repo -O /etc/yum.repos.d/
LocalMirror.repo
wget http://192.168.1.5/hosts/hosts -O /etc/hosts
wget http://192.168.1.5/resolv_conf/resolv.conf -O /etc/resolv.conf

install puppet
yum clean all
yum clean metadata
yum install puppet -y

wget http://192.168.1.5/puppet/puppet.conf -O /etc/puppet/puppet.conf

echo "127.0.0.1 <?php echo $hostname . PHP_EOL ?>" >> /etc/hosts

grub-install fails consistently
grub-install /dev/sda

network install - escape

press “ESC”

network install - set ks.cfg

linux ks=http://<server>/<path>/?hostname=<hostname>

network install - finishing

remove disk and reboot.

network install - password

Encourage the user to change the root password.

Your solution

• glossed over networking;

• or at least our DHCP / DNS management.

• (local) cloud with automatic provisioning;

• centrally hosted, full SOE;

• ... lots of options.

now back to the good part
• Manage “Complex” Puppet installations;

• example server / service layout;

• environments;

• hazardous changes;

• file overrides;

• swapping Puppetmasters;

• a real example fact;

• programming in Puppet.

“Complex” Puppet

• Puppet can not solve the conflict between Sys
Admins and their clients on its own;

• Communication and co-operation are key (in
production AND on the road there).

• In testing and development, isolation can go a
long way ...

• but the closer to production the more involved
other team members and teams need to be.

Assumptions

• Developers:

• administer VMs on their desktop;

• tweak development instances of their software
on production hosts, possibly even have root
access; but

• do not (generally) touch production instances
of their software;

Assumptions ... continued

• There needs to be a code repository;

• The developers should probably be the code
repository administrators;

• The repository should be accessible from every
host the developers work on.

Before we begin

• Node configurations are essential, irrespective of
which of the following options will be
implemented.

• Doing away with node files that make a (group
of) server(s) unique is unlikely to be beneficial.

• Easy to retrofit (see slides about migrating
Puppetmasters).

Node configurations

• Node configurations are not enough to separate
projects being actively managed with Puppet:

• There is a risk of contaminating unrelated hosts
because projects will need reusable modules;

• Node files no longer affects unlisted hosts.

• Developers should be involved in tuning theirs
hosts’ node configurations;

• ... but this is a Sys Admin area of expertise.

Working with Puppets

• Physically separate Puppetmasters:

• Pro: others can have access to their own
Puppetmaster instance;

• Pro: little chance of cross contamination;

• Con: more painful to migrate Puppet
configuration from test through to production;

• Con: if you lose a Puppetmaster, remaining can
not “just” take over;

Shared Custody Puppets

• Same Puppetmaster, different “environments”:

• Pro: cheaper;

• Pro: reasonably simple to maintain (to a point);

• Con: best administered by a Puppet expert;

• Con: reduces flexibility in maintaining the SOE;

• Con: access to select files by select people;

• Con: ...what is your Puppet DR strategy?

The best of both worlds
• Multiple hosts with multiple environments:

• Pro: SOE system stays clean;

• Pro: Easy to migrate changes;

• Pro: Modules from one stage are unlikely to
contaminate another stage;

• Pro: if you lose a Puppetmaster any of the
remaining can take over with a little tweaking;

• Con: possible extra costs / definitely requires
more resources;

The best of both worlds

The key is this:
Project Puppet Code becomes SOE Puppet Code.

Environments
• Ideally someone audits Puppet code before it

becomes SOE / Production.

• Since code is in two filesystem locations any host
can talk to the same Puppetmaster;

• Preferably only in a DR situation.

• Requires environments and node files.

• “Environment” is a Puppet Agent (client) setting
which allows deviation / override from standard
configuration.

why won’t this contaminate?

• Node files identify the hosts, and sets
environment by affecting the client’s puppet.conf;

• The puppet.conf sets environment and thus
includes additional module path; and

• Module path contains different stages (on
different Puppetmasters) of the project Puppet
code;

better than just environments

• If anything breaks it will not impact:

• other groups’ projects;

• other hosts at different stages;

• when people get to go home;

• especially the expert who has to make N
systems not have a fault;

• ...even though Puppet is not a critical service!

• test hosts should not be (as) monitored.

Puppetmaster’s puppet.conf

[main]
 logdir = /var/log/puppet
 rundir = /var/run/puppet
 ssldir = $vardir/ssl

[agent]
 classfile = $vardir/classes.txt
 localconfig = $vardir/localconfig

[development]
 modulepath = /etc/puppet/modules:/opt/dev/puppet-modules

[testing]
 modulepath = /etc/puppet/modules:/opt/test/puppet-modules

node files

node /\.vm.test$/ {
 $puppetd_environment = "testing"

 include defaultnode
 include control
}

• what I used in testing:

node "c6pagent.example.org" {
 $puppetd_environment = "testing"

 include defaultnode
 include control
}

• Sample test node file (used real life):

puppet.conf.erb

[main]
 logdir = /var/log/puppet
 rundir = /var/run/puppet
 ssldir = $vardir/ssl
 pluginsync = true

[agent]
 classfile = $vardir/classes.txt
 localconfig = $vardir/localconfig
 server = c6pmaster.example.org
 splay = true
 runinterval = 1800
 environment = <%= puppetd_environment %>

• deploy to puppet_conf/templates/puppet.conf.erb

new puppet_conf module

class puppet_conf {
 file { "/etc/puppet/puppet.conf":
 owner => root,
 group => 0,
 mode => 644,
 content => template("puppet_conf/puppet.conf.erb"),
 notify => Service["puppet"];
 }

 service { "puppet":
 name => $operatingsystem ? {
 darwin => "com.reductivelabs.puppet",
 default => "puppet",
 },
 ensure => running,
 enable => true;
 }
}

SELinux
[root@c6pmaster ~]# semanage fcontext -a -t puppet_etc_t /opt/dev/puppet-modules
\(/.*\)?
[root@c6pmaster ~]# semanage fcontext -a -t puppet_etc_t /opt/test/puppet-
modules\(/.*\)?
[root@c6pmaster ~]# semanage fcontext -a -t puppet_etc_t /var/root-opt/dev/
puppet-modules\(/.*\)?
[root@c6pmaster ~]# semanage fcontext -a -t puppet_etc_t /var/root-opt/test/
puppet-modules\(/.*\)?
[root@c6pmaster ~]# restorecon -Rv /opt/*/puppet*
restorecon reset /opt/dev/puppet-modules context unconfined_u:object_r:usr_t:s0-
>unconfined_u:object_r:puppet_etc_t:s0
restorecon reset /opt/test/puppet-modules context
unconfined_u:object_r:usr_t:s0->unconfined_u:object_r:puppet_etc_t:s0
restorecon reset /opt/test/puppet-modules/control context
unconfined_u:object_r:usr_t:s0->unconfined_u:object_r:puppet_etc_t:s0
restorecon reset /opt/test/puppet-modules/control/templates context
unconfined_u:object_r:usr_t:s0->unconfined_u:object_r:puppet_etc_t:s0
restorecon reset /opt/test/puppet-modules/control/files context
unconfined_u:object_r:usr_t:s0->unconfined_u:object_r:puppet_etc_t:s0
restorecon reset /opt/test/puppet-modules/control/manifests context
unconfined_u:object_r:usr_t:s0->unconfined_u:object_r:puppet_etc_t:s0
restorecon reset /opt/test/puppet-modules/control/manifests/init.pp context
unconfined_u:object_r:usr_t:s0->unconfined_u:object_r:puppet_etc_t:s0
[root@c6pmaster ~]#

Control

• Test module which echoes into /root/purpose

[root@c6pmaster ~]# vi /opt/test/puppet-modules/control/manifests/
init.pp
[root@c6pmaster ~]# cp -R /opt/test/puppet-modules/control /opt/dev/
puppet-modules/
[root@c6pmaster ~]# cat /opt/test/puppet-modules/control/manifests/
init.pp
class control {
 file {
 "/root/purpose":
 content => $puppetd_environment;
 }
}

Control

• Can not use modules in new environment until
the client configuration is updated:

[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
err: Could not retrieve catalog from remote server: Error 400 on
SERVER: Could not parse for environment main: Syntax error at
'control' at /etc/puppet/manifests/nodes/c6pagent.node:1 on node
c6pagent.example.org
warning: Not using cache on failed catalog
err: Could not retrieve catalog; skipping run
[root@c6pagent ~]#

Deploy new puppet.conf
[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1333712437'
notice: /File[/etc/puppet/puppet.conf]/content:
--- /etc/puppet/puppet.conf 2012-04-06 02:57:21.259390010 +1000
+++ /tmp/puppet-file20120406-7723-1eph5x8-0 2012-04-06 02:58:14.175704006
+1000
@@ -10,4 +10,4 @@
 server = c6pmaster.example.org
 splay = true
 runinterval = 1800
- environment = main
+ environment = testing

info: FileBucket adding {md5}4d6895c9ff7f6f45d042d04a5baef45f
info: /File[/etc/puppet/puppet.conf]: Filebucketed /etc/puppet/puppet.conf
to puppet with sum 4d6895c9ff7f6f45d042d04a5baef45f
notice: /File[/etc/puppet/puppet.conf]/content: content changed '{md5}
4d6895c9ff7f6f45d042d04a5baef45f' to '{md5}52d66941298f8abca8a3f4b8afca5cf3'
info: /File[/etc/puppet/puppet.conf]: Scheduling refresh of Service[puppet]
notice: /Stage[main]/Puppet_conf/Service[puppet]: Triggered 'refresh' from 1
events
notice: Finished catalog run in 7.27 seconds
[root@c6pagent ~]#

Deploy control

[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1333713217'
notice: /Stage[main]/Execute/Exec[echo top into /tmp/puppet.top]/
returns: executed successfully
notice: /File[/root/purpose]/ensure: defined content as '{md5}
ae2b1fca515949e5d54fb22b8ed95575'
notice: Finished catalog run in 3.02 seconds
[root@c6pagent ~]# cat /root/purpose
testing[root@c6pagent ~]#

• and switched to “development” ... :

info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1333713788'
notice: /File[/etc/puppet/puppet.conf]/content:
--- /etc/puppet/puppet.conf 2012-04-06 02:58:14.315392554 +1000
+++ /tmp/puppet-file20120406-9116-1k14lue-0 2012-04-06 03:20:45.138387525 +1000
@@ -10,4 +10,4 @@
 server = c6pmaster.example.org
 splay = true
 runinterval = 1800
- environment = testing
+ environment = development

info: FileBucket adding {md5}52d66941298f8abca8a3f4b8afca5cf3
info: /File[/etc/puppet/puppet.conf]: Filebucketed /etc/puppet/puppet.conf to puppet
with sum 52d66941298f8abca8a3f4b8afca5cf3
notice: /File[/etc/puppet/puppet.conf]/content: content changed '{md5}
52d66941298f8abca8a3f4b8afca5cf3' to '{md5}c1f49cb34e236b6186a05122f9830076'
info: /File[/etc/puppet/puppet.conf]: Scheduling refresh of Service[puppet]
notice: /Stage[main]/Puppet_conf/Service[puppet]: Triggered 'refresh' from 1 events
notice: /File[/root/purpose]/content:
--- /root/purpose 2012-04-06 03:11:16.300395068 +1000
+++ /tmp/puppet-file20120406-9116-15ala1k-0 2012-04-06 03:20:51.683576911 +1000
@@ -1 +1 @@
-testing
\ No newline at end of file
+development
\ No newline at end of file

info: FileBucket adding {md5}ae2b1fca515949e5d54fb22b8ed95575
info: /File[/root/purpose]: Filebucketed /root/purpose to puppet with sum
ae2b1fca515949e5d54fb22b8ed95575
notice: /File[/root/purpose]/content: content changed '{md5}
ae2b1fca515949e5d54fb22b8ed95575' to '{md5}759b74ce43947f5f4c91aeddc3e5bad3'
notice: Finished catalog run in 7.02 seconds

That should not have worked

• The catalog is compiled before the new
puppet.conf is deployed;

• Once Puppet is running it does not adjust to
the new environment listed in the puppet.conf.

why’d that work?

• It actually did not:

• used the original (testing) control module;

• but both use a variable to set the content;

• test it by changing the content to a string;

• ... or just trust me.

more node files

• Sample production node file:

node "wsaprod1.example.org", "wsaprod2.example.org" {
 $service_group = "wsa_prod"

 include defaultnode
 include control
}

• Sample development node file

node "wsadev1.example.org", "wsadev2.example.org" {
 $service_group = "wsa_dev"
 $puppetd_environment = "development"

 include defaultnode
 include control
}

Automate Puppet Module
Replication

• Two aspects:

• SOE Puppet code - which is next;

• Project Puppet code - not dealt with...

• though our setup allows Developers to check
project Puppet Code out to the development
Puppetmaster without Sys Admin
involvement.

Replicate SOE Puppet Code

• “Automatic” means “break everything at once”;

• “Manual” means “a ‘change’ causing an ‘incident’”;

• “Delayed” means you have to wait before you
break all Puppetmasters at once;

• Though implementing a delay is neither simple;

• ... nor will it help.

Automatic Replication
• Test your change;

• Fix your typos;

• Worst Case: affected nodes’ catalogue will not
build and thus change will not be applied until the
next run.

• IF your change can cause worse, you should be
following your hazardous change procedure (see
“Hazardous Changes”).

Auto Replicate module

[modules]
 use chroot = false
 read only = true
 path = /etc/puppet/modules

[manifests]
 use chroot = false
 read only = true
 path = /etc/puppet/manifests

[fileserver]
 use chroot = false
 read only = true
 path = /etc/puppet/fileserver

• rsyncd.conf

Auto Replicate module
• Cron Job

* * * * * root /usr/bin/rsync --delete --rsh="/usr/bin/ssh -2 -l puppetsync -i /opt/
puppetsync/.ssh/id_rsa" --exclude-from=/home/puppetsync/excludelist -a
c6pmaster.example.org::modules /etc/puppet/modules/ > /dev/null 2>&1

* * * * * root /usr/bin/rsync --delete --rsh="/usr/bin/ssh -2 -l puppetsync -i /opt/
puppetsync/.ssh/id_rsa" --exclude-from=/home/puppetsync/excludelist -a
c6pmaster.example.org::manifests /etc/puppet/manifests/ > /dev/null 2>&1

* * * * * root /usr/bin/rsync --delete --rsh="/usr/bin/ssh -2 -l puppetsync -i /opt/
puppetsync/.ssh/id_rsa" --exclude-from=/home/puppetsync/excludelist -a
c6pmaster.example.org::fileserver /etc/puppet/fileserver/ > /dev/null 2>&1

Auto Replicate module

• exclude list

##
don’t copy rsa keys or .svn
##
id_rsa
.svn
##
Server & Cert name will be different
##
/shared-puppetd/templates/puppet.conf*
/shared-puppetd/files/puppet.conf*

Auto Replicate module
class auto_replicate_puppet {
 Group["puppetsync"] -> User["puppetsync"] -> File["/home/puppetsync"]
 File["/home/puppetsync"] -> File["/home/puppetsync/.ssh"]
 File["/home/puppetsync"] -> File["/home/puppetsync/excludelist"]
 File["/opt/dev"] -> File["/opt/dev/puppet-modules"] -> Exec["dev puppetmodules"]
-> Exec["dev puppetmodules real location"]
 File["/opt/test"] -> File["/opt/test/puppet-modules"] -> Exec["test
puppetmodules"] -> Exec["test puppetmodules real location"]

 user {
 "puppetsync":
 uid => 5000,
 gid => 5000,
 comment => "Puppet synchronization user",
 shell => "/bin/bash",
 home => "/home/puppetsync";
 }

 group { "puppetsync": gid => 5000; }

continued on next slide

Auto Replicate module
 file {
 ["/home/puppetsync","/home/puppetsync/.ssh"]:
 owner => 5000,
 group => 5000,
 mode => 700,
 ensure => directory;

 "/home/puppetsync/excludelist":
 owner => 5000,
 group => 5000,
 mode => 700,
 source => "puppet:///modules/auto_replicate_puppet/exclude";

 "/etc/cron.d/auto_replicate_puppet":
 owner => root,
 group => root,
 mode => 644,
 source => "puppet:///modules/auto_replicate_puppet/cronjob";

 ["/opt/dev","/opt/test","/opt/dev/puppet-modules","/opt/test/puppet-
modules"]:
 owner => root,
 group => root,
 mode => 755,
 ensure => directory;
 }

continued on next slide

Auto Replicate module
 exec {
 "dev puppetmodules":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /opt/dev/puppet-
modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/opt/dev/puppet-modules'";

 "dev puppetmodules real location":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /var/root-opt/dev/
puppet-modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/var/root-opt/dev/puppet-
modules'";

 "test puppetmodules":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /opt/test/puppet-
modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/opt/test/puppet-modules'";

 "test puppetmodules real location":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /var/root-opt/test/
puppet-modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/var/root-opt/test/puppet-
modules'";
 }
}

returned ... nothing?

• commands / puppet can be very memory hungry;

• VM used for test testing could not cope on only
512MB.

err: /Stage[main]/Auto_replicate_puppet/Exec[dev
puppetmodules]/returns: change from notrun to 0 failed: /usr/
sbin/semanage fcontext -a -t puppet_etc_t /opt/dev/puppet-
modules\(/.*\)? returned instead of one of [0] at /etc/puppet/
modules/auto_replicate_puppet/manifests/init.pp:69

Auto Replicate module
[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1333722948'
notice: /File[/opt/test]/ensure: created
notice: /Stage[main]/Auto_replicate_puppet/Group[puppetsync]/ensure: created
notice: /Stage[main]/Auto_replicate_puppet/User[puppetsync]/ensure: created
notice: /File[/home/puppetsync]/ensure: created
notice: /File[/home/puppetsync/excludelist]/ensure: defined content as '{md5}
737dadfe1586ed07603c849c71ce849e'
notice: /File[/etc/cron.d/auto_replicate_puppet]/ensure: defined content as '{md5}
c0e2cc2b6b05ce51242a6c4a5a0ec793'
notice: /File[/opt/test/puppet-modules]/ensure: created
notice: /Stage[main]/Auto_replicate_puppet/Exec[test puppetmodules]/returns:
executed successfully notice: /File[/home/puppetsync/.ssh]/ensure: created
notice: /File[/opt/dev]/ensure: created
notice: /Stage[main]/Auto_replicate_puppet/Exec[test puppetmodules real location]/
returns: executed successfully
notice: /File[/opt/dev/puppet-modules]/ensure: created
notice: /Stage[main]/Auto_replicate_puppet/Exec[dev puppetmodules]/returns: executed
successfully
notice: /Stage[main]/Auto_replicate_puppet/Exec[dev puppetmodules real location]/
returns: executed successfully
notice: Finished catalog run in 35.42 seconds
[root@c6pagent ~]#

manually on replicating host
[root@c6pagent ~]# su - puppetsync
-bash-4.1$ ssh-keygen -b 1024 -t rsa -f ./.ssh/id_rsa
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in ./.ssh/id_rsa.
Your public key has been saved in ./.ssh/id_rsa.pub.
The key fingerprint is:
83:9c:31:97:49:25:07:21:53:37:5e:ab:20:0e:b6:4d
puppetsync@c6pagent.example.org
The key's randomart image is:
+--[RSA 1024]----+
| o.*+= . |
| + B o . |
| o E = . . |
| . B B . . |
| . * S . |
| . |
| |
| |
| |
+-----------------+
-bash-4.1$

manually on Puppetmaster

[root@c6pmaster ~]# groupadd -g 5000 puppetsync
[root@c6pmaster ~]# useradd -u 5000 -g 5000 -c "Puppet synchronization user"
-s "/bin/bash" -d "/home/puppetsync" -m puppetsync
[root@c6pmaster ~]# su - puppetsync
[puppetsync@c6pmaster ~]# vi ~puppetsync/rsyncd.conf
[puppetsync@c6pmaster ~]$ mkdir .ssh ; chmod 700 .ssh/
[puppetsync@c6pmaster ~]$ vi .ssh/authorized_keys
[puppetsync@c6pmaster ~]$ chmod 600 .ssh/authorized_keys

manually on replicating host

-bash-4.1$ ssh c6pmaster.example.org -i .ssh/id_rsa
The authenticity of host 'c6pmaster.example.org (192.168.1.9)' can't be established.
RSA key fingerprint is 14:18:de:92:d7:6d:80:58:f9:ae:c6:74:63:f2:a6:38.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'c6pmaster.example.org,192.168.1.9' (RSA) to the list of
known hosts.
[puppetsync@c6pmaster ~]$ exit
logout
Connection to c6pmaster.example.org closed.

automatically on replicating
host

[root@c6pagent ~]# ls -l /opt/{dev,test}/puppet-modules/ /etc/puppet
/etc/puppet:
total 20
-rw-r--r--. 1 root root 2552 Mar 13 02:30 auth.conf
drwxr-xr-x. 3 root root 4096 Apr 6 2012 fileserver
drwxr-xr-x. 3 root root 4096 Apr 6 2012 manifests
drwxr-xr-x. 13 puppet puppet 4096 Apr 6 2012 modules
-rw-r--r--. 1 root root 266 Apr 6 03:26 puppet.conf

/opt/dev/puppet-modules/:
total 4
drwxr-xr-x. 5 puppet puppet 4096 Apr 6 2012 control

/opt/test/puppet-modules/:
total 4
drwxr-xr-x. 5 puppet puppet 4096 Apr 6 2012 control
[root@c6pagent ~]#

To make this a Puppetmaster
• install puppet-server;

• set to start on boot;

• remove and recreate /var/lib/puppet;

• restore the SELinux context;

• this is a bad idea once host is a Puppetmaster;

• update firewall;

• Misc /etc/puppet configs are not explicitly
replicated.

Swapping Puppetmasters
• Setup new Puppetmaster;

• On the client to be moved:

• delete /var/lib/puppet ;

• run `puppetd -vt --server=<new master>` ;

• On the new master, sign certificates;

• On the client run puppetd again.

On the client

[root@c6repo ~]# puppetd -vt --server=c6pagent.example.org
info: Creating a new SSL key for c6repo.example.org
warning: peer certificate won't be verified in this SSL session
info: Caching certificate for ca
warning: peer certificate won't be verified in this SSL session
warning: peer certificate won't be verified in this SSL session
info: Creating a new SSL certificate request for c6repo.example.org
info: Certificate Request fingerprint (md5): 5A:90:5B:
38:63:78:96:21:99:8B:58:3E:D6:0B:03:59
warning: peer certificate won't be verified in this SSL session
warning: peer certificate won't be verified in this SSL session
warning: peer certificate won't be verified in this SSL session
Exiting; no certificate found and waitforcert is disabled
[root@c6repo ~]#

On the Puppetmaster

[root@c6pagent puppet]# puppetca --sign c6repo.example.org
notice: Signed certificate request for c6repo.example.org
notice: Removing file Puppet::SSL::CertificateRequest
c6repo.example.org at '/var/lib/puppet/ssl/ca/requests/
c6repo.example.org.pem'
[root@c6pagent puppet]#

On the client
[root@c6repo puppet]# puppetd -vt --server=c6pagent.example.org
info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6repo.example.org
info: Applying configuration version '1334642468'
notice: /File[/etc/pam.d/system-auth-local]/ensure: defined content
as '{md5}f1d3f40734136a98d16ade24066ee042'
info: FileBucket adding {md5}e8aee610b8f5de9b6a6cdba8a33a4833
info: /File[/etc/pam.d/system-auth]: Filebucketed /etc/pam.d/system-
auth to puppet with sum e8aee610b8f5de9b6a6cdba8a33a4833

... trust me, it worked

info: /File[/etc/puppet/puppet.conf]: Scheduling refresh of
Service[puppet]
notice: /Stage[main]/Puppet_conf/Service[puppet]/ensure: ensure
changed 'stopped' to 'running'
notice: /Stage[main]/Puppet_conf/Service[puppet]: Triggered 'refresh'
from 1 events
notice: /File[/home/t.durden]/ensure: created
notice: /Stage[main]/Local_users/Deploy_user[Tyler Durden]/
User[t.durden]/ensure: created
info: Creating state file /var/lib/puppet/state/state.yaml
notice: Finished catalog run in 12.90 seconds
[root@c6repo puppet]#

Swapping issues

• Most problems due to certificates:

• Remove the client certificate from old master;

• Ensure client certificate not on new master;

• Stop puppetd before deleting /var/lib/puppet;

• Time of hosts must be in sync;

Swapping issues ... continued

• Client should not be newer than master;

• 2.7.x client talking to 2.6.x master likely to fail.

• Do NOT delete the puppet.conf ;

• can affect the client’s directory structure;

Hazardous Changes

• And thus file overrides

Hazardous Changes

• Always tell the service owner you are about to
do something that may ruin their day.

• Occasionally things go wrong, if others do not
know in advance it will be worse.

• Sometimes this might not be a scheduled outage
or require a change request, but that depends on
your site.

Sample Hazardous Change

• Imagine:

• Using LDAP to look up and NSCD to cache
user information on hosts.

• (Service users are on host accounts);

• What could go wrong?

Things go wrong

• Network could drop out; or

• LDAP service could disappear; or

• Power or hardware failure on any of the
components;

Pardon my paranoia

• In the past three years (2010 - 2012) UQ has had
(at least) one of each:

• DC fire;

• 100 year (30 year?) flood;

• DC power failure;

• which badly affected the SAN.

... but the service is up ! ...

• Through all of these, LDAP stayed up.

• But at least:

• one gateway failed (fire);

• half of the VMware farm disappeared (SAN);

• some intermittent networking issues arose
(other than missing a gateway) (fire, SAN and
changes).

Segue - SOE DR

LDAP Service revisions

• LDAP is not using Multi Master setup:

• Version 2 of our setup went:

• from one master and slave;

• to one master, two primary slaves and ucarp;

• Version 3

• one master, two primary slaves and ucarp;

• and LDAP on our other core DR hosts
(Repositories and Puppet Masters);

LDAP Master

• LDAP master vulnerable because one of a kind;

• Can be rebuilt in ~20 minutes because deployed
entirely automatically via Puppet;

• Slapcat backups are done daily;

designed for failure
• On host authentication used to comprise of:

• LDAP +

• NSCD +

• pam_ssh (slightly hacked for on-host auth) +

• two sets of centrally pushed out ssh keys:

• one for pam_ssh; and

• one for traditional ssh;

Not great because
• pam_ssh for on-host auth is flakey;

• NSCD times out; ...

• PAM won’t meet its configured requirements;

• reconfiguring PAM’s base requirements can be
a bad idea;

• building tarballs of /home and ssh keys is:

• CPU intensive;

• does not deploy unless LDAP already works;

because ... continued
• NSCD does not:

• cache authentication related information;

• retain information indefinitely;

• Does (depending on version):

• leak memory;

• hang on network access if network is down;

• NSCD was not designed to be used this way.

meet SSSD

• Can use different authentication methods;

• Will cache:

• passwd and group info for anything it sees;

• shadow for users it has authenticated;

• pam_sss and sssd replaces pam_ssh + keys.

SSSD downsides

• Does not cache information it has not needed;

• Very occasionally the cache gets corrupted and
needs to be reset;

• Server rebuild procedure does not include
restores by default;

• People who had logged into the destroyed
server are not cached on the rebuilt one.

So, SSSD is great

• Thus, change all hosts to use it.

• This is a major change:

• If it worked on a few hosts it should work
every time;

• sssd and nscd running together leads to a
corrupt sssd’s cache;

• Bad idea to deploy to 100+ servers in one go.

Relax

• Probably would not spend a lot of effort tweaking
NSCD’s Puppet module;

• Ensuring absence of NSCD remnants is always
good when deploying SSSD, so put this in the new
SSSD Puppet module.

• Can you disable your modules?

disable modules?
class shared-USG_internal_ldap2010
{

 if ($skip_USG_internal_ldap2010 != "true") {

 ## Deploy client certificate - needed on all hosts
 file {
 ["/etc/ssl", "/etc/ssl/certs"]:
 owner => root,
 group => root,
 mode => 755,
 ensure => directory;

 "/etc/ssl/certs/cacert.pem":
 owner => root,
 group => root,
 mode => 644,
 source => "puppet:///modules/shared-
USG_internal_ldap2010/cacert2010.pem",
 require => File["/etc/ssl/certs"];
 }

###...

So then
• In the individual node files set:

$skip_USG_internal_ldap2010 = "true"

• when migrating them to the new SSSD based
solution;

• If the Puppet modules are modular, may need to
retrofit this to several ; or

• Work out which ones to disable and what
dependencies this will affect.

Conversely
• In new modules set something like:

class redhat-sssd
{

 if ($deploy_sssd == "true") {
 #...

• ... to selectively enable for nodes being migrated;

• careful with that logic:

• skip uses !=

• deploy uses ==

• might accidentally deploying something.

File Overrides

• Disabling the old method is a start;

• /etc/pam.d/system-auth also needs replacing.

system-auth module before

class system-auth {
 if ($skip_system_auth != "true") {

 file {
 "/etc/pam.d/system-auth-local":
 owner => root,
 group => root,
 mode => 644,
 source => "puppet:///modules/system-auth/system-auth.conf";

 "/etc/pam.d/system-auth":
 ensure => "/etc/pam.d/system-auth-local",
 require => File["/etc/pam.d/system-auth-local"];
 }
 }
}

system-auth module after

class system-auth {
 if ($skip_system_auth != "true") {

 if ($file_system_auth == "") {
 $file_system_auth = "puppet:///modules/system-auth/system-auth"
 }

 file {
 "/etc/pam.d/system-auth-local":
 owner => root,
 group => root,
 mode => 644,
 source => $file_system_auth;

 "/etc/pam.d/system-auth":
 ensure => "/etc/pam.d/system-auth-local",
 require => File["/etc/pam.d/system-auth-local"];
 }
 }
}

Caveat / Retraction

• Updated code allows override of files, configured
in node file;

• Unless the configuration structure relies on
inheritance:

• 2011 talk included this.

• If implemented, here is the required change:

defaultnode.node

• Remember:

• can not name default class “default”;

• do not need to change the file extension;

• was:

node default {
lots of includes
}

• now:

class defaultnode {
lots of includes
}

Individual node files

• was:

node "c6pagent.example.org" inherit default {

}

• now (including override):

node "c6pagent.example.org" {
 $file_system_auth = "puppet:///modules/system-auth/system-auth.sssd"

 include defaultnode
}

Where to store the file

• Sample system-auth file for using SSSD’s will
become default in system-auth module;

• logical to keep in the module.

• Consider node specific overrides.

$service_group

• A site specific variable, can be called anything.

• Used to differentiate between:

• individual hosts and

• collections (i.e.: a “service group”);

• Set variable in every node file;

overrides and service groups

[modules]
 allow *.example.org

[puppettest]
 path /etc/puppet/fileserver/puppettest
 allow c6pagent.example.org

• Configure via /etc/puppet/fileserver.conf

• In the node file:
node "c6pagent.example.org" {
 $service_group = "puppettest"
 $file_system_auth = "puppet:///$service_group/system-auth"

 include defaultnode
}

Drop throughs

• The file resource type supports definition of
multiple sources.

• Starts with first source, and stops on first match:

file {
 "/etc/sysconfig/iptables":
 owner => root,
 group => root,
 mode => 600,
 source => [
 "puppet:///modules/iptables/iptables.$fqdn",
 "puppet:///modules/iptables/iptables.$service_group",
 "puppet:///modules/iptables/iptables",
],
 notify => Service["iptables"];
}

Be careful though

• Non-generic items in modules is generally bad:

• decommissioned hosts’ files linger;

• Divide:

• Generic files via Modules;

• Specific files and settings via Node file and
custom fileserver shares.

• Things might remain but are out of the way.

Drop Through a better way

file {
 "/etc/sysconfig/iptables":
 owner => root,
 group => root,
 mode => 600,
 source => [
 "puppet:///$service_group/iptables",
 "puppet:///modules/iptables/iptables",
],
 notify => Service["iptables"];
}

• Check the service group’s custom files first;

• or else deploy module default:

The story so far

• Manage “complex” Puppet installations;

• Server / service layout and implementation;

• Puppet configuration’s environments;

• Hazardous changes;

• File overrides and

• Drop through;

• Swapping Puppet clients’ Puppetmasters;

Next

• Puppet Configurations files revisited;

• A real fact using Ruby;

• Programming with Puppet;

• Creating Puppet configurations via Python;

• Adding Passenger to Puppetmaster;

• Lot’s of SELinux related joy;

• Classes to collect defines.

Config files ... revisited

• puppet.conf

• fileserver.conf

• autosign.conf

• auth.conf

fileserver.conf

• Discussed above in file overrides;

• Works with

• FQDN (including * wildcard);

• IP addresses, CIDR or * wildcard);

• Some changes require a Puppetmaster restart;

• http://docs.puppetlabs.com/guides/file_serving.html

fileserver.conf

• May break if it contains trailing spaces / tabs;

[root@c6pmaster ~]# service httpd stop
Stopping httpd: [OK]
[root@c6pmaster ~]# service puppetmaster start
Starting puppetmaster: [OK]
[root@c6pmaster ~]# service puppetmaster status
puppetmasterd (pid 7215) is running...
[root@c6pmaster ~]# vi /etc/puppet/fileserver.conf
[root@c6pmaster ~]# service puppetmaster restart
Stopping puppetmaster: [OK]
Starting puppetmaster: [OK]
[root@c6pmaster ~]# service puppetmaster status
puppetmasterd dead but pid file exists
[root@c6pmaster ~]#

autosign.conf

• Very handy for your Developer’s Test VMs

• Tells Puppetmaster to always sign the client;

• also updates the certificate if it changes;

• There are security issues;

• Might contain:

[root@c6pmaster ~]# cat /etc/puppet/autosign.conf
*.example.org

auth.conf

• Authentication config for REST API

• http://docs.puppetlabs.com/guides/rest_api.html

• http://docs.puppetlabs.com/guides/
rest_auth_conf.html

Facts
• Collected before the main Puppet run and used

in building the client specific catalog;

• Useful to extract information;

• There are size constraints (e.g.: `rpm -qa | sort`
returns too much);

• simple fact that executes a bash script:
Facter.add("rh_release") do
 setcode do
 %x{/bin/cat /etc/redhat-release | /bin/sed 's/[^0-9.]*//g' | /
bin/cut -d . -f 1}.chomp
 end
end

A real fact

• As discussed, LDAP used for managing groups;

• Dev’s needed to get some information for
deploying mercurial configurations;

getGIDs.rb
getGIDs.rb
require 'ldap'

$HOST = 'usgldap.example.org'
$PORT = LDAP::LDAP_PORT
$SSLPORT = LDAP::LDAPS_PORT
$BIND = 'cn=unprivuser,dc=example,dc=org'
$PASSWORD = '!53cr37'

groups = {
 'usg' => 'nsysadm',
 'ss' => 'wdu',
}

myfilter = '(|'
groups.each { |key, val|
 myfilter += "(cn=#{val})"
}
myfilter += ')'

to be continued next slide

getGIDs.rb ... continued
base = 'ou=Group,dc=example,dc=org'
scope = LDAP::LDAP_SCOPE_SUBTREE
attrs = ['cn', 'gidNumber']
results = {}

begin
 conn = LDAP::Conn.new($HOST, $PORT)
 conn.bind($BIND, $PASSWORD)

this preserves the existing mappings, a single query
 group_lookup = groups.invert
 conn.search(base, scope, myfilter, attrs) { |entry|
 results[group_lookup[entry.vals('cn')[0]]] = entry.vals('gidNumber')
 }

 conn.unbind
rescue
 LDAP::ResultError
 conn.perror("search")
 exit
end

results.each { |key, val|
 Facter.add("#{key}_gid") { setcode { val[0] } }
}

resulting facts
[root@c6pmaster node]# pwd
/var/lib/puppet/yaml/node
[root@c6pmaster node]# grep gid something.example.org.yaml
 usg_gid: "902"
 ss_gid: "923"
[root@c6pmaster node]#

• rather than hard code the GID, use the fact:

 file {
 "/home/chakkerz":
 ensure => directory,
 owner => chakkerz,
group => 902,
 group => $usg_gid,
 mode => 700,
 require => User["chakkerz"];
 }

Programming with Puppet

• Why Puppet?

• What went wrong?

• What went right?

• What are the trade-offs?

Why Puppet?
• Already existed and better understood than the

older CCMS;

• No installation scripts;

• No installation procedures;

• No packaging applications;

• Just a configuration of what to do...

• and lots of support from friendly SysAdmins.

What is Puppet (again)?

• Puppet tries hard to offer features developers are
familiar with:

• branching execution;

• inheritance;

• scope; but

• sequential execution is limited;

• variables are constants / different; and

• for loops are only sort-of do-able.

Let’s re-word that
• Puppet offers:

• an uncertain execution path; and

• an unfamiliar approach to loops;

• with variable constants where you:

• define how they are set;

• can append to already set values;

• a familiar concept of scope for “functions” /
“variables”; and

• inheritance (with overrides).

Segue inheritance

• http://docs.puppetlabs.com/guides/
language_guide.html lists the following (abridged):

class unix {
 file {
 "/etc/passwd":
 owner => root,
 group => root,
 mode => 0644;
 }
}

class freebsd inherits unix {
 File['/etc/passwd'] { group => wheel }
}

system-auth revisited
class system-auth {
 if ($skip_system_auth != "true") {

 if ($file_system_auth == "") {
 $file_system_auth = "puppet:///modules/system-auth/system-auth"
 }

 file {
 "/etc/pam.d/system-auth-local":
 owner => root,
 group => root,
 mode => 644,
 source => $file_system_auth;

 "/etc/pam.d/system-auth":
 ensure => "/etc/pam.d/system-auth-local",
 require => File["/etc/pam.d/system-auth-local"];
 }
 }
}

system-auth module
class system-auth {

 file {
 "/etc/pam.d/system-auth-local":
 owner => root,
 group => root,
 mode => 644,
 source => "puppet:///modules/system-auth/system-auth";

 "/etc/pam.d/system-auth":
 ensure => "/etc/pam.d/system-auth-local",
 require => File["/etc/pam.d/system-auth-local"];
 }

}

class sssd-system-auth inherits system-auth {
 File['/etc/pam.d/system-auth-local'] {
 source => "puppet:///modules/system-auth/system-auth.sssd"
 }
}

Our way
node "c6pagent.example.org" {
 $file_system_auth = "puppet:///modules/system-auth/system-auth.sssd"

 include defaultnode

}

Inheritance’s way
node "c6pagent.example.org" {

 include execute
 include local_users
 include packages
 include puppet_conf
 include rh_release_if
 include sshd_config
 include sysadmins
 include sssd-system-auth
}

Disclaimer

• Did not test the inheritance code;

• Default node would still be a node (rather than a
class; see “File Overrides”);

Puppet is first and foremost
• A system administrator’s tool.

• Deploy various bits and pieces;

• ... not necessarily in a particular order;

• though that can be achieved;

• Configuration is mostly applied again and again.

• Programmability is handy, but code visually differs
from configuration.

What went wrong?

• Both developers who wrote this code moved on;

• Other developers had never become familiar
with Puppet, or the modules the project relied
on;

Top three issues

• Order of execution;

• inter-dependencies defined wrong or not at all;

• Defines;

• some identical “functions” in every module;

• some four levels of indirection removed;

• Extremely slow;

Extremely slow

• Obvious:

• every run Puppet would reset permissions;

• Red herring:

• recursive directory deployments - already
stopped using built-in file server in favour of
mongrel and passenger.

Defines

• N modules implementing the same function;

• giving N implementations of the same function in
N files;

• where N = ...

[root@tangelo]# ls -dc1 ss-app* | wc -l
28
[root@tangelo]# grep "define environment" ss-app*/manifests/init.pp |
wc -l
13

Let me show you
class ss-application-<something> {
 ## ... snip ...
 $user = <something>
 ## ... snip ...

 ss-application-<something>::environment {
 ["local","development","test","staging","production",]:
 }

 define environment() {
 include ss-platform-php
 $type = $name

 ss-platform-php::zend_environment { "${user}_env_$type":
 basedir => $home,
 type => $type,
 user => $user,
 require => [File[$home],Ss-util::Set_group_facl["$home-wdu"],],
 }

 # this bit ties us to the repo layout
 file { "$home/www/$type":
 target => "$home/$type/php",
 ensure => "link",
 require => [Ss-platform-php::Zend_environment["${user}_env_$type"],],
 }
}

(slightly formatted to fit on slide)

Things to note

• This is about showing that different mindsets
resulting in different code.

• Yes, that is a for loop;

• $type is set to each element of the array;

Order of execution

• Puppet looks for chaining statements to
determine order;

• Wrong or missing chaining means Puppet
needs to run repeatedly / does not run at all;

• Requiring an entire Class means everything in the
class AND their requirements must be satisfied;

• This is calculated every time.

[root@tangelo]# grep -A3 require */manifests/*pp | grep Class | wc -l
19

You’re not alone

• It is bad when your code depends on someone
else’s;

• you require nscd service being configured;

• and they switch from nscd to sssd.

• ...and they don’t know that you depend on it...

• Better to use a fact that talks to LDAP directly,
irrespective of the host’s running configuration.

• Not always an option.

classes requiring classes
class shared-users::create_home_link {
 if ($operatingsystem == "solaris") {
 file {
 "/export/home":
 ensure => directory;

 "home_directory":
 path => "/home",
 force => true,
 ensure => "/export/home",
 require => File["/export/home"];
 }
 } elsif ($operatingsystem == "freebsd") {
 file {
 "/var/home":
 ensure => directory;

 "home_directory":
 path => "/home",
 force => true,
 ensure => "/var/home",
 require => File["/var/home"];
 }
 }
}

shared-users’s init.pp (continued)

class shared-users {
 require shared-users::create_home_link

 if ($skip_shared_users != "true") {

 ## Always deploy USG, IRT and SB
 include shared-users::nsysadm
 include shared-users::nirtadm
 include shared-users::nsbadm

 if ($enable_un == "true") {
 include shared-users::ndnadm
 }

 if ($enable_wdu == "true") {
 include shared-users::wdu
 }

 if ($enable_is == "true") {
 include shared-users::nsiadm
 }
 }
}

nsysadm.pp
class shared-users::nsysadm {
 if ($no_sssd_available == "true") {
 group {
 "nsysadm":
 gid => 902;
 }

 user {
 "chakkerz":
 uid => 750,
 gid => 902,
 home => "/home/chakkerz",
 comment => "Christian Unger",
 shell => $operatingsystem ? {
 freebsd => "/bin/sh",
 default => "/bin/bash",
 },
 password => '1S.tAd0$wLUZe8egCOnyxSIZiLv.M.',
 require => Group["nsysadm"];
 }
 }

nsysadm.pp
 file {
 "/home/chakkerz":
 owner => 750,
 group => 902,
 mode => 700,
 ensure => directory;

 "/home/chakkerz/.ssh":
 owner => 750,
 group => 902,
 mode => 700,
 ensure => directory,
 require => File["/home/chakkerz"];

 "/home/chakkerz/.ssh/authorized_keys":
 owner => 750,
 group => 902,
 mode => 600,
 content => 'ssh-rsa',
 require => File["/home/chakkerz/.ssh"];
 }
}

Generating classes

• If sssd is not available on a client host it is still
possible to rely on LDAP to centrally manage
users;

• Ruby DSL on the client is one way;

• Getting a script to generate class files is another;

ldap-group_based.py

#!/usr/bin/python

source http://www.grotan.com/ldap/python-ldap-samples.html

import ldap

first you must open a connection to the server
try:

 l = ldap.initialize("ldaps://ldap.example.org:636/")
 l.protocol_version = ldap.VERSION3

 l.simple_bind_s("cn=auth_LDAP,dc=usg,dc=example,dc=org ","7h3$3cr37")

except ldap.LDAPError, e:
 print e
 # handle error however you like

The next lines will also need to be changed to support your search requirements and directory
searchItem = "ou=group,"
baseDN = "dc=usg,dc=example,dc=org"
searchScope = ldap.SCOPE_SUBTREE
retrieveAttributes = ['memberUid', 'gidNumber', 'cn']
searchFilter = "cn=*"

groups = []

ldap-group_based.py ... 2
try:
 ldap_result_id = l.search(searchItem + baseDN, searchScope, searchFilter, retrieveAttributes)
 result_set = []
 while 1:
 result_type, result_data = l.result(ldap_result_id, 0)
 if (result_data == []):
 break
 else:
 ## here you don't have to append to a list
 ## you could do whatever you want with the individual entry
 ## The appending to list is just for illustration.
 if result_type == ldap.RES_SEARCH_ENTRY:
 result_set.append(result_data)
 groups.append(result_data)
except ldap.LDAPError, e:
 print e

now, based on the retrievedAttributes split the result:
for group in groups:
 try:
 group_name = group[0][1].get('cn')[0]
 group_gid = group[0][1].get('gidNumber')[0]
 group_members = group[0][1].get('memberUid')
 group_users = ""
 group_homes = ""
 group_useremail = ""
 group_email = ""

 except TypeError:
 print "## Error on", group

ldap-group_based.py ... 3

 if group_members != None:
 for member in group_members:
 # now we need:
 # - Real Name
 # - their password
 # - ssh public key
 # - shell
 # - email address (not on every account right now)
 searchItem = "ou=People,"
 retrieveAttributes = ['uid', 'loginShell', 'uidNumber', 'gecos', 'homeDirectory',
'userPassword', 'mail', 'sshPublicKey', 'description']
 searchFilter = "uid=" + member

 try:
 ldap_result_id = l.search(searchItem + baseDN, searchScope, searchFilter,
retrieveAttributes)
 result_set = []
 while 1:
 result_type, result_data = l.result(ldap_result_id, 0)
 if (result_data == []):
 break
 else:
 ## here you don't have to append to a list
 ## you could do whatever you want with the individual entry
 ## The appending to list is just for illustration.
 if result_type == ldap.RES_SEARCH_ENTRY:
 result_set.append(result_data)

ldap-group_based.py ... 4
 for user in result_data:
 try:
 username = result_data[0][1].get('uid')[0]
 uid = result_data[0][1].get('uidNumber')[0]
 gid = group[0][1].get('gidNumber')[0]
 groupname = group[0][1].get('cn')[0]
 home = result_data[0][1].get('homeDirectory')[0]
 comment = result_data[0][1].get('gecos')[0]
 shell = result_data[0][1].get('loginShell')[0]

 except TypeError:
 print "## ERROR ON ", user, "\n"

 try:
 keys = ""
 for publicKey in result_data[0][1].get('sshPublicKey'):
 keys += publicKey + "\n"

 except TypeError:
 keys += "\n issue with key(s) \n"

 try:
 password = "!!"
 passwords = result_data[0][1].get('description')
 for password_temp in passwords:
 if password_temp.startswith("1"):
 password = password_temp
 break
 except TypeError:
 password += "issue with password"

ldap-group_based.py ... 5

 group_homes += '\n\t\t"' + home + '":\n'
 group_homes += '\t\t\towner\t=> ' + uid + ',\n'
 group_homes += '\t\t\tgroup\t=> ' + gid + ',\n'
 group_homes += '\t\t\tmode\t=> 700,\n'
 group_homes += '\t\t\tensure\t=> directory;\n'

 group_homes += '\n\t\t"' + home + '/.ssh":\n'
 group_homes += '\t\t\towner\t=> ' + uid + ',\n'
 group_homes += '\t\t\tgroup\t=> ' + gid + ',\n'
 group_homes += '\t\t\tmode\t=> 700,\n'
 group_homes += '\t\t\tensure\t=> directory,\n'
 group_homes += '\t\t\trequire\t=> File["' + home + '"];\n'
 group_homes += '\n\t\t"' + home + '/.ssh/authorized_keys":\n'
 group_homes += '\t\t\towner\t=> ' + uid + ',\n'
 group_homes += '\t\t\tgroup\t=> ' + gid + ',\n'
 group_homes += '\t\t\tmode\t=> 600,\n'
 group_homes += "\t\t\tcontent\t=> '" + keys + "',\n"
 group_homes += '\t\t\trequire\t=> File["' + home + '/.ssh"];\n'

 group_users += '\n\t\t\t"' + username + '":\n'
 group_users += '\t\t\t\tuid\t=> ' + uid + ',\n'
 group_users += '\t\t\t\tgid\t=> ' + gid + ',\n'
 group_users += '\t\t\t\thome\t=> "' + home + '",\n'
 group_users += '\t\t\t\tcomment\t=> "' + comment + '",\n'
 group_users += '\t\t\t\tshell\t=> $operatingsystem ? {\n'
 group_users += '\t\t\t\t\tfreebsd => "/bin/sh",\n'
 group_users += '\t\t\t\t\tdefault => "' + shell + '",\n'
 group_users += '\t\t\t\t},\n'
 group_users += "\t\t\t\tpassword => '" + password + "',\n"
 group_users += '\t\t\t\trequire\t=> Group["' + groupname + '"];\n'

 except ldap.LDAPError, e:
 print e

ldap-group_based.py ... 6
 filename = "/tmp/shared-users/" + group_name + ".pp"
 file = open(filename, 'w')

 file.write("class shared-users::" + group_name + " {\n")

 file.write('\tif ($no_sssd_available == "true") {\n')

 file.write("\t\tgroup {\n" + '\t\t\t"' + group_name + '":\n' + "\t\t\t\tgid\t=> " + group_gid
+ ";\n" + "\t\t}\n\n")

 if group_users != "":
 file.write("\t\tuser {" + group_users + "\t\t}\n")

 file.write('\t}\n\n')

 if group_homes != "":
 file.write("\tfile {" + group_homes + "\t}\n\n")

 file.write("}\n")
 file.close()

• Probably not the best example of how to do this.

• Not tested in production just yet.

What went right?

• The ground work (not just Puppet, but Load
Balancer configuration etc) made deploying new
applications extremely easy and flexible;

• Puppet was (relatively) easy to use to deploy new
applications.

• Most issues were not Puppet related, but with
generic issues of how to interact with a SOE or
Unix in general;

• primarily `sudo` or `su - <application user>`
and thus resulting issues.

What went right ... continued

• The basic framework was good, but:

• badly documented;

• clearly rushed;

• under-used because hard to follow.

• The overall project was clearly NOT a failure, but
Puppet required attention.

Trade-offs

• Communication is the biggest issue:

• Both SysAdmins and Developers need to work
together.

• Need to come to an arrangement where both
can work autonomously;

Getting it right(er)

• The original code worked, but had issues;

• Structure was good: e.g.: php applications
included php platform module, which contained
re-usable functions and shared requirements;

• Retrofitting fixes == very time consuming:

• Five days to rewrite 38 modules;

• and end up with 32.

• versus hundreds of hours to assist with
unfamiliar code.

So, what changed?

• Coding style;

• Naming conventions;

• Duplicated types moved to parent module;

• Chaining much more targeted and pervasive;

• Permissions:

• set to what the service itself was enforcing;

• FACLs used more extensively and at a higher
level (rather than per application);

What else changed?

• Application modules:

• call shared parent functions;

• contain application specific settings only;

• Master control module calls global functions
always, instead of using Virtual Resources.

Segue Virtual Resources

• Puppet will let most types be defined only once;

• Imagine: tomcat is needed for two application;

• Can only install tomcat in one of them;

• Or install tomcat with neither application;

• OR create a virtual function and “realise” it in
both application modules.

virtual_tomcat

class virtual_tomcat {
 @deploy_service { "tomcat6": service => "tomcat6"; }
}

define deploy_service($service) {
 package { "$service": ensure => installed; }

 service {
 "$service":
 enable => true;
 ensure => running;
 }
}

Note the @

realize

• realize it in another module / node file:

node "c6pagent.example.org" {
 $service_group = "puppettest"

 realize Deploy_service["tomcat6"]

 include defaultnode
}

... and deploy

• There is a little more to this, see:

• http://docs.puppetlabs.com/guides/
virtual_resources.html

[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1333677567'
notice: /Stage[main]/Virtual_tomcat/Deploy_service[tomcat6]/
Package[tomcat6]/ensure: created
notice: /Stage[main]/Virtual_tomcat/Deploy_service[tomcat6]/
Service[tomcat6]/ensure: ensure changed 'stopped' to 'running'
notice: Finished catalog run in 197.08 seconds
[root@c6pagent ~]#

Should you virtualize?
• Never seen a Virtual Resources that was not

realized.

• For example: a web servers hosting PHP
applications will always want PHP installed.

• Virtual Resources offer alternative to on/off
switches, though with semantic difference:

• default off, selective on, multiple invocations in
various places;

• skip_ (default on) or deploy_ (default off) in
node file only.

Any other changes?

• Documentation of the overall layout generated;

• Developers maintain the modules, so they
should maintain their documentation.

Resulting structure

Finally ... some code

• Application modules (eg fcgi, mercurial and
tomcat)

• Platform modules (eg php and python)

• Service modules (eg nginx)

• Test VM’s limited deployment

deploy hgrc to /home

• ${homedir_chakkerz} and ${fullname_chakkerz}
are custom facts filled by querying LDAP;

• $hgUsername, $realName and $email are used in
the template;

• replace => false

• require targets specifically what needs to exist
(rather than an entire class),

• homedir_deployment; the “usg” should be a
passed argument;

deploy hgrc to /home
class rhel6-ss-util-homedirs {
 hgrc {
 "chakkerz":
 home => "${homedir_chakkerz}",
 username => "chakkerz",
 hgUsername => "uqcunge2",
 realName => "${fullname_chakkerz}",
 email => "c.unger@its.uq.edu.au";
 }

 define hgrc($home, $username, $hgUsername, $realName, $email) {
 file { "${home}/.hgrc":
 content => template("ss-util-homedirs/hgrc.erb"),
 owner => $username,
 replace => false,
 require => [Homedir_deployment["usg"], Service["sssd"],];
 }
 }
}

parts of php-platform 1 & 2

• package using an array to install;

• specific require;

• exec chaining;

• returns to avoid failed dependencies;

parts of platform-php ... 1
class rhel6-ss-platform-php {
 package {
 ["php-5.3-pdo-oci-zend-server",
 "php-5.3-oci8-zend-server",
 "php-5.3-pdo-mysql-zend-server",
 "php-5.3-mysqli-zend-server",
 "php-5.3-mbstring-zend-server",
 "php-5.3-gd-zend-server",
 "php-5.3-ctype-zend-server",
 "php-5.3-curl-zend-server",
 "php-5.3-memcached-zend-server"]:
 ensure => installed,
 require => [File["/etc/yum.repos.d/ITS-Zend6.repo"],
File["/etc/pki/rpm-gpg/RPM-GPG-KEY-zend"],],
 before => Exec["fix zend extensions"];

 "httpd-devel.$arch": ensure => installed;
 "autoconf.noarch": ensure => installed;
 }

parts of platform-php ... 2

 exec {
 "fix zend extensions":
 command => "${variables::sed_cmd} -i -e 's|^extension=\\([^/]\
\+.so\\)|extension=/usr/local/zend/lib/php_extensions/\\1|' /usr/local/
zend/etc/conf.d/*.ini";
 }

 exec {
 "clear php-5.3 pear cache":
 command => "/usr/local/zend/bin/pear clear-cache",
 require => Package["php-5.3-dev-zend-server"],
 returns => [0, 1]; # returns 1 when there was no cache

 "php-5.3-pear":
 command => "/usr/local/zend/bin/pear update-channels",
 require => Exec["clear php-5.3 pear cache"];
 }

parts of php-platform 3,4 & 5

• $name (pear_channel_discover)

• unless attribute

• one way of avoiding gcc is installed permanently

• though probably not the best way

parts of platform-php ... 3

 define pear_channel_discover($channel = "") {
 if $channel == "" { $ch = $name }
 else { $ch = $channel }

 exec {
 "php-5.3 pear channel $ch":
 command => "/usr/local/zend/bin/pear channel-discover $ch",
 unless => "/usr/local/zend/bin/pear channel-info $ch",
 require => Exec["php-5.3-pear"];
 }
 }

 pear_channel_discover { "pear.phpunit.de": }
 pear_channel_discover { "components.ez.no": }
 pear_channel_discover { "pear.symfony-project.com": }

parts of platform-php ... 4
 define pear_install($package = "") {
 if $package == "" { $p = $name }
 else { $p = $package }

 exec {
 "php-5.3 pear package $p":
 command => "/usr/local/zend/bin/pear install $p",
 unless => "/usr/local/zend/bin/pear info $p",
 require => Exec["php-5.3-pear"];
 }
 }

 pear_install {
 "php-5.3-XML_Serializer":
 package => "XML_Serializer-beta";

 "php-5.3-PHPUnit":
 package => "phpunit/PHPUnit",
 require => [
 Pear_channel_discover["pear.phpunit.de"],
 Pear_channel_discover["pear.symfony-project.com"],
 Pear_channel_discover["components.ez.no"],
];
 }

parts of platform-php ... 5

 define pecl_install($package = "") {
 if $package == "" { $p = $name }
 else { $p = $package }

 exec { "php-5.3 pecl package $p":
 command => "${variables::yum_cmd} install -y gcc.$arch && /
usr/bin/yes '' | /usr/local/zend/bin/pecl install $p && $
{variables::yum_cmd} remove -y gcc.$arch",
 unless => "/usr/local/zend/bin/pecl info $p",
 require => Exec["php-5.3-pear"];
 }
 }

 pecl_install { "php-5.3-apc": package => "APC-3.1.9"; }
}

service-nginx

• targeted require’s

• refreshonly attribute

• setfacl from a restore file;

parts of service-nginx ... 1

class rhel6-ss-service-nginx {
 if ($skip_service_nginx != "true") {
 package { "nginx.x86_64": ensure => installed; }

 file {
 "/etc/nginx/conf.d":
 owner => root,
 group => root,
 mode => 755,
 ensure => directory,
 require => Package["nginx.x86_64"];

 "/etc/nginx/nginx.conf":
 owner => root,
 group => root,
 mode => 644,
 source => "puppet:///modules/rhel6-ss-service-nginx/
nginx.conf",
 require => Package["nginx.x86_64"];

parts of service-nginx ... 2

 "nginx_log.perms":
 path => "/etc/nginx/nginx_log.perms",
 owner => root,
 group => root,
 mode => 644,
 require => [Package["nginx.x86_64"], Service["sssd"],
Group["ssapp"],],
 source => "puppet:///modules/rhel6-ss-service-nginx/
nginx_log.perms";
 }

 exec {
 "restore_nginx_log_perms":
 command => "${variables::setfacl_cmd} --restore=/etc/nginx/
nginx_log.perms",
 cwd => "/var/log/nginx",
 subscribe => File["nginx_log.perms"],
 refreshonly => true;
 }

parts of service-nginx ... 3
 service {
 "nginx":
 ensure => running,
 enable => true,
 subscribe => File["/etc/nginx/nginx.conf"];
 }
 }
}

file: .
owner: nginx
group: root
user::rwx
user:nginx:rwx
group::r-x
group:wdu:r-x
group:ssapp:rwx
mask::rwx
other::r-x
default:user::rwx
default:user:nginx:rwx
default:group::r-x
default:group:wdu:r-x
default:group:ssapp:rwx
default:mask::r-x
default:other::r-x

contents of nginx_log.perms:

ss-application

• argument passing with default arguments;

• including using passed arguments to act as
defaults;

• define calling other defines;

• including from another scope;

parts of ss-application ... 1
class rhel6-ss-application {
 ##
 ## Setup group, parent directories and facls on parent directories
 ##
 group{ "ssapp": gid => 765; }

 file {
 ["/opt/apps","/var/log/apps"]:
 owner => root,
 group => root,
 mode => 755,
 ensure => directory;
 }

 exec {
 "set group facl for wdu on /opt/apps/":
 command => "${variables::setfacl_cmd} -R -m
default:group:wdu:rwx /opt/apps && ${variables::setfacl_cmd} -R -m
group:wdu:rwx /opt/apps",
 cwd => "/opt/apps";
 }

parts of ss-application ... 2

 define setup_application_account($uid, $gid, $user, $comment, $groups
= ["fcgi", "ssapp"], $log_uid = $uid, $log_gid = $gid) {
 user {
 $user:
 uid => $uid,
 gid => $gid,
 groups => $groups,
 comment => $comment,
 home => "/opt/apps/$user",
 shell => "/bin/true",
 }

 group { $user: gid => $gid; }

parts of ss-application ... 3
 file {
 "/opt/apps/$user":
 owner => $uid,
 group => $gid,
 mode => 775,
 ensure => directory,
 require => File["/opt/apps"];

 "/var/log/apps/$user":
 owner => $log_uid,
 group => $log_gid,
 mode => 755,
 ensure => directory,
 require => File["/var/log/apps"];

 "/opt/apps/$user/www":
 owner => $uid,
 group => nginx,
 mode => 770,
 ensure => directory,
 require => [Package["nginx.$arch"], File["/var/log/apps/
$user"],];
 }
 }

parts of ss-application ... 4

 define setup_mercurial_application($uid, $gid, $user, $comment,
$path) {
 setup_application_account {
 "mercurial setup $user":
 uid => $uid,
 gid => $gid,
 user => $user,
 comment => $comment;
 }

 rhel6-ss-platform-python::setup_mercurial_configs {
 "mercurial configs for $user":
 uid => $uid,
 user => $user,
 path => $path;
 }
 }
}

Selective App deploy

• The biggest issue for the developers using Puppet
has been speed;

• Obvious way to speed things up is only deploy
what is needed on a particular VM.

• VM’s name matches the application being
developed on it.

• e.g.: academicportal-ckz.vm.test

the control module
class rhel6-dev-control {
 $apps = [
 # JAVA
 'rhel6-ss-application-cas',
 'rhel6-ss-application-grouper',
 # PHP
 'rhel6-ss-fcgi-application-academicportal',
 'rhel6-ss-fcgi-application-accountactivation',
 'rhel6-ss-fcgi-application-drupaltest',
 # Python
 'rhel6-ss-application-hgitsss',
 'rhel6-ss-application-hgitsusg',
]

 define setupApp() {
 notice "requesting ${name}"
 include "${name}"
 }

 if ($skip_rhel6_dev_control != "true") {
 include rhel6-ss-application
 include rhel6-ss-util
 include rhel6-ss-util-homedirs
 include rhel6-ss-service-nginx
 include rhel6-ss-service-fastcgi
 include rhel6-ss-platform-python
 include rhel6-ss-platform-php

the control module ... fin

 if ($domain == 'vm.test' and $hostname =~ /^(\w+)-(\w+)$/) {
 $app = $1
 if !("rhel6-ss-fcgi-application-$app" in $apps) and !("rhel6-ss-application-$app"
in $apps) {
 notice "No app match VM name, setup all applications"
 setupApp { $apps :}
 } else {
 if ("rhel6-ss-fcgi-application-$app" in $apps) {
 setupApp { ["rhel6-ss-fcgi-application-${app}"] :}
 }
 if ("rhel6-ss-application-$app" in $apps) {
 setupApp { ["rhel6-ss-application-${app}"] :}
 }
 }
 } else {
 notice "General setup for all applications"
 setupApp { $apps :}
 }
 }
}

naming conventions

• Production bits code so they clash with the clean
examples.

• Everything new starts with “rhel6”

• Application naming:

• fcgi are PHP apps;

• things ending in hg* are Mercurial repo apps;

• everything else is Java.

• Still needs attention and is still evolving to suite.

Execution Order

• include location matters:

• variables defined below an include, which
should use them, notoriously do not work;

• dependencies also fail;

• have not tried this extensively in 2.7.x

A better example

• http://riffraff169.wordpress.com/2012/03/09/add-
file-contexts-with-puppet/

• Highlights:

• “unless” parameter

• great use of define

• fail (function call)

• see http://docs.puppetlabs.com/references/
2.6.8/function.html

classes/selinux.class
• in /etc/puppet/manifests create classes/selinux.class

class selinux {

 define fcontext($context, $pathname) {
 if ($context == "") or ($pathname == "") {
 fail ("Context and Pathname must not be empty")
 }

 $semf_cmd = "/usr/sbin/semanage fcontext"

 exec {
 "add $context $pathname":
 command => "$semf_cmd -a -t $context \"$pathname\"",
 unless => "$semf_cmd -l | /bin/grep \"^$pathname.*:
$context:\"";
 }
 }
}

include in site.pp

[root@c6pmaster manifests]# cat site.pp
import "nodes/*.node"
import "classes/*.class"

old auto_replicate_puppet
 exec {
 "dev puppetmodules":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /opt/dev/puppet-
modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/opt/dev/puppet-modules'";

 "dev puppetmodules real location":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /var/root-opt/dev/
puppet-modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/var/root-opt/dev/puppet-
modules'";

 "test puppetmodules":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /opt/test/puppet-
modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/opt/test/puppet-modules'";

 "test puppetmodules real location":
 command => "/usr/sbin/semanage fcontext -a -t puppet_etc_t /var/root-opt/test/
puppet-modules\(/.*\)?",
 cwd => "/",
 unless => "/usr/sbin/semanage fcontext -l | grep '/var/root-opt/test/puppet-
modules'";
 }
}

new auto_replicate_puppet

 selinux::fcontext {
 "dev puppetmodules":
 context => "puppet_etc_t",
 pathname => "/opt/dev/puppet-modules(/.*)?";

 "dev puppetmodules real location":
 context => "puppet_etc_t",
 pathname => "/var/root-opt/dev/puppet-modules(/.*)?";

 "test puppetmodules":
 context => "puppet_etc_t",
 pathname => "/opt/test/puppet-modules(/.*)?";

 "test puppetmodules real location":
 context => "puppet_etc_t",
 pathname => "/var/root-opt/test/puppet-modules(/.*)?";
 }
}

chaining updated
• old :

• new :

File["/opt/dev"] -> File["/opt/dev/puppet-modules"] -> Exec["dev
puppetmodules"] -> Exec["dev puppetmodules real location"]

File["/opt/test"] -> File["/opt/test/puppet-modules"] -> Exec["test
puppetmodules"] -> Exec["test puppetmodules real location"]

File["/opt/dev"] -> File["/opt/dev/puppet-modules"] ->
Selinux::Fcontext["dev puppetmodules"] -> Selinux::Fcontext["dev
puppetmodules real location"]

File["/opt/test"] -> File["/opt/test/puppet-modules"] ->
Selinux::Fcontext["test puppetmodules"] -> Selinux::Fcontext["test
puppetmodules real location"]

deployed
[root@c6pagent ~]# semanage fcontext -l | grep puppet-modules
[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /etc/puppet/modules/custom/lib/facter/
rh_release.rb
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1337245374'
notice: /Stage[main]/Execute/Exec[echo top into /tmp/puppet.top]/
returns: executed successfully
notice: /Stage[main]/Auto_replicate_puppet/Selinux::Fcontext[test
puppetmodules]/Exec[add puppet_etc_t /opt/test/puppet-modules(/.*)?]/
returns: executed successfully
notice: /Stage[main]/Auto_replicate_puppet/Selinux::Fcontext[test
puppetmodules real location]/Exec[add puppet_etc_t /var/root-opt/
test/puppet-modules(/.*)?]/returns: executed successfully
notice: /Stage[main]/Execute/Exec[touch a file just once]/returns:
executed successfully
notice: /Stage[main]/Auto_replicate_puppet/Selinux::Fcontext[dev
puppetmodules]/Exec[add puppet_etc_t /opt/dev/puppet-modules(/.*)?]/
returns: executed successfully
notice: /Stage[main]/Auto_replicate_puppet/Selinux::Fcontext[dev
puppetmodules real location]/Exec[add puppet_etc_t /var/root-opt/dev/
puppet-modules(/.*)?]/returns: executed successfully
notice: Finished catalog run in 33.98 seconds

tested

[root@c6pagent ~]# semanage fcontext -l | grep puppet-modules
/opt/dev/puppet-modules(/.*)? all files
system_u:object_r:puppet_etc_t:s0
/opt/test/puppet-modules(/.*)? all files
system_u:object_r:puppet_etc_t:s0
/var/root-opt/dev/puppet-modules(/.*)? all files
system_u:object_r:puppet_etc_t:s0
/var/root-opt/test/puppet-modules(/.*)? all files
system_u:object_r:puppet_etc_t:s0
[root@c6pagent ~]#

fail

[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /etc/puppet/modules/custom/lib/facter/
rh_release.rb
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
err: Could not retrieve catalog from remote server: Error 400 on
SERVER: Context and Pathname must not be empty at /etc/puppet/
manifests/classes/selinux.class:5 on node c6pagent.example.org
warning: Not using cache on failed catalog
err: Could not retrieve catalog; skipping run
[root@c6pagent ~]#

• fail acts only on empty $context or $pathname :

• omitting either will cause different (built in) error.

Passenger

• see http://projects.puppetlabs.com/projects/1/
wiki/Using_Passenger

• Crash course to follow ...

Prepare for Passenger

[puppetmasterd]
 ssl_client_header = SSL_CLIENT_S_DN
 ssl_client_verify_header = SSL_CLIENT_VERIFY

[root@c6pmaster ~]# yum install httpd httpd-devel ruby-devel rubygems
gcc mod_ssl
...
[root@c6pmaster ~]# yum install mod_passenger
...

• Install a bunch of packages

• Update the puppet.conf

Segue mod_passenger

[root@c6repo etc]# cat yum.repos.d/passenger.reposync
[passenger-x86_64]
name=Passenger repository for EL6
baseurl=http://passenger.stealthymonkeys.com/rhel/6/$basearch
enabled=1
gpgcheck=1
[root@c6repo etc]#

15 3 * * * root reposync -n -c /etc/yum.repos.d/passenger.reposync -
p /var/www/mrepo/passenger -a x86_64 -r passenger-x86_64 &&
createrepo /var/www/mrepo/passenger/passenger-x86_64

• mirror the repository (cronjob)

• Need to mirror a new repo;

• create /etc/yum.repos.d/passenger.reposync

• update LocalMirror.repo on the client.

rack.conf and config.ru

[root@c6pmaster ~]# cp /usr/share/puppet/ext/rack/files/
apache2.conf /etc/httpd/conf.d/rack.conf
[root@c6pmaster ~]# vi /etc/httpd/conf.d/rack.conf
[root@c6pmaster ~]# mkdir -p /etc/puppet/rack/public
[root@c6pmaster ~]# mkdir -p /etc/puppet/rack/tmp
[root@c6pmaster ~]# cp /usr/share/puppet/ext/rack/files/config.ru /
etc/puppet/rack
[root@c6pmaster ~]# chown puppet /etc/puppet/rack/config.ru

• deploy and update rack.conf and config.ru

• restart httpd

PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerStatThrottleRate 120
RackAutoDetect Off
RailsAutoDetect Off

Listen 8140

<VirtualHost *:8140>
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP

 SSLCertificateFile /var/lib/puppet/ssl/certs/c6pmaster.example.org.pem
 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/c6pmaster.example.org.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars

 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 DocumentRoot /etc/puppet/rack/public/
 RackBaseURI /
 <Directory /etc/puppet/rack/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

SELinux

[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
err: /File[/var/lib/puppet/lib]: Failed to generate additional resources using
'eval_generate: Error 500 on SERVER: <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//
EN">
<html><head>
<title>500 Internal Server Error</title>
</head><body>
<h1>Internal Server Error</h1>
<p>The server encountered an internal error or
misconfiguration and was unable to complete
your request.</p>
<p>Please contact the server administrator,
 root@localhost and inform them of the time the error occurred,
and anything you might have done that may have
caused the error.</p>
<p>More information about this error may be available
in the server error log.</p>
<hr>
<address>Apache/2.2.15 (CentOS) Server at c6pmaster.example.org Port 8140</address>
</body></html>

• semodule -i /usr/share/selinux/packages/rubygem-
passenger/rubygem-passenger.pp

• touch /.autorelabel ; reboot

no, not SELinux

[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /etc/puppet/modules/custom/lib/facter/rh_release.rb
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1334677530'
notice: /Stage[main]/Execute/Exec[echo top into /tmp/puppet.top]/returns: executed
successfully
notice: Finished catalog run in 36.32 seconds
[root@c6pagent ~]#

• error on 2.7.12-1 ; downgraded to 2.7.11-2

• restart httpd and:

maniacal laughter
• standard SELinux troubleshooting

• follow sealert tickets in /var/log/messages

[root@c6pmaster ~]# cat ruby_puppet.te
module ruby_puppet 1.0.9;

require {
 type httpd_t;
 type puppet_var_run_t;
 type puppet_var_lib_t;
 class file { write rename create unlink setattr };
 class dir { search read create write getattr rmdir remove_name add_name };
}

#============= httpd_t ==============
allow httpd_t puppet_var_lib_t:dir read;
allow httpd_t puppet_var_lib_t:dir { write remove_name create add_name rmdir };
allow httpd_t puppet_var_lib_t:file { write rename create unlink setattr };
allow httpd_t puppet_var_run_t:dir { search getattr };
[root@c6pmaster ~]# checkmodule -M -m -o ruby_puppet.mod ruby_puppet.te
checkmodule: loading policy configuration from ruby_puppet.te
checkmodule: policy configuration loaded
checkmodule: writing binary representation (version 10) to ruby_puppet.mod
[root@c6pmaster ~]# semodule_package -o ruby_puppet.pp -m ruby_puppet.mod
[root@c6pmaster ~]# semodule -i ruby_puppet.pp

test entire process
• signing a new agent and standard run:
[root@c6pagent ~]# puppetd -vt --server=c6pmaster.example.org
info: Retrieving plugin
notice: /File[/var/lib/puppet/lib/facter]/ensure: created
notice: /File[/var/lib/puppet/lib/facter/rh_release.rb]/ensure: defined content as
'{md5}c872f6c6d50139da8034661183d7e1b1'
info: Loading downloaded plugin /var/lib/puppet/lib/facter/rh_release.rb
info: Loading facts in /etc/puppet/modules/custom/lib/facter/rh_release.rb
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1334679591'
notice: /Stage[main]/Execute/Exec[echo top into /tmp/puppet.top]/returns: executed
successfully
notice: /Stage[main]/Puppet_conf/Service[puppet]/ensure: ensure changed 'stopped' to
'running'
info: Creating state file /var/lib/puppet/state/state.yaml
notice: Finished catalog run in 9.24 seconds
[root@c6pagent ~]# puppetd -vt
info: Retrieving plugin
info: Loading facts in /etc/puppet/modules/custom/lib/facter/rh_release.rb
info: Loading facts in /var/lib/puppet/lib/facter/rh_release.rb
info: Caching catalog for c6pagent.example.org
info: Applying configuration version '1334679591'
notice: /Stage[main]/Execute/Exec[echo top into /tmp/puppet.top]/returns: executed
successfully
notice: Finished catalog run in 5.67 seconds
[root@c6pagent ~]#

Choices

• clearly you can keep SELinux on:
[root@c6pmaster ~]# getenforce
Enforcing

• it is a bit of effort;

• ultimately worth it.

• see also: http://wiki.centos.org/HowTos/SELinux

restop

• Some config changes occasionally do not get
picked up;

• Problems with Puppet configuration do not
prevent httpd from working. Starting
puppetmaster can provide insight into what’s
wrong.

• service httpd stop; service puppetmaster start;
service puppetmaster stop; service httpd start

Conclusion

• Many different ways to do everything covered;

• Remember everyone’s expertise;

• Sys Admin’s built the SOE;

• Developers build on it;

• Everyone needs to be happy;

• Achieved through honest communication and
co-operation.

